SECOND SEMESTER EXAMINATION 2021-22 M.Sc. Mathematics Paper - II Real Analysis - II

Time : 3.00 Hrs.	
Total No. of Printed Page : 03	

Note: Question paper is divided into three sections. Attempt question of all three section as per direction. Distribution of Marks is given in each section.

Section - 'A'

Very short type question (in few words).

- Q.1 Attempt any six question from the following questions :
 - (i) Write translation invariant.
 - (ii) Write outer measure of cantor set.
 - (iii) Define characteristic function.
 - (iv) Define Borel set.
 - (v) State Bounded convergence theorem.
 - (vi) If *f* is bounded measurable function defined on a set *E* and m(E) = 0Then write the value of $\int_{E} f$.
 - (vii) A measurable function of continuous. It is True of false.

Max. Marks : 80 Mini. Marks : 29

6x2=12

- (viii) "A bounded function is necessarily a function of bounded variation " Whether this statement is 'true' or 'false'.
- (ix) State Holder's inequality.
- (x) Define L^{∞} -space.

Section - 'B'

Short answer question (In 200 words)

4x5=20

- Q.2 Attempt any four question from the following questions :
 - (i) Let $\{E_n\}$ be a countable collection of sets of real numbers. Then

$$m^{\forall}\left(\bigcup_{n=1}^{\infty}E_{n}\right)\leq\sum_{n=1}^{\infty}m^{*}\left(E_{n}\right)$$

- (ii) Prove that the interval (a,∞) is measurable.
- (iii) Prove that a continous function defined on a measurable set is measurable.
- (iv) Show that a function is simple if and only if it is measurable and assumes only a finite number of values.
- (v) If $\int_{E} f = 0$ and $f(x) \ge 0$ on E then prove that f = 0 a.e. on E
- (vi) Using lebesgue dominated convergence theorem Evaluate following :

$$\lim_{n \to \infty} \int_0^1 \frac{n^{\frac{3}{2}x}}{1+n^2 x^2} dx, \ x \in \{0,1\}, n = 1, 2, 3....$$

- (vii) Prove that every absolutely continuous function is of bounded variation.
- (viii) If $f, g \in L^p[a,b]$. Then prove that $f + g \in L^p[a,b]$.

Section - 'C'

(3)

Long answer/Essay type question.

- Q.3 Attempt any four question from the following questions :
 - (i) Prove that outer measure of an interval is its length.
 - (ii) Prove that union of measurable set is a measurable set.
 - (iii) Let f and g be measurable function on E. Then prove that each of the following functions is measurable on E:

(a)
$$f + g$$
 (b) $f - g$ (c) fg (d) $\frac{f}{g}(g(x) \neq 0 \text{ on } E)$

- (iv) (a) Let f be a function defined on a measurable set E. Prove that f is measurable if and only if, for any open set G in R the inverse image $f^{-1}(G)$ is a measurable set.
 - (b) Let *f* and *g* be two function defined on a common domain *E* such that f = g *a.e.* and *g* is measurable. Prove that *f* is measurable on *E*.
- (v) (a) State and prove monotone convergence theorem.
 - (b) State and prove Frechet theorem.
- (vi) (a) Let f and g be non-negative measurable function defined on a set E. Then prove that :

$$\int_{E} (f+g) = \int_{E} f + \int_{E} g$$

- (b) State and p_{i}^{P} ve Fatou's lemma.
- (vii) (a) If f is of bounded variation on [a,b] then

$$T_{a}^{b} = P_{a}^{b} + N_{a}^{b}$$
 and $f(b) - f(a) = P_{a}^{b} - N_{a}^{b}$

- (b) Prove that L^p space is complete.
- (viii) State and prove Schwarz's Inequality.